1.4 Важнейшие параметры сумматоров
Важнейшими параметрами сумматоров являются:
- разрядность;
- статические параметры: Ubx, Ubx, Iвх и так далее, то есть обычные параметры интегральных схем;
- динамические параметры. Сумматоры характеризуются четырьмя задержками распространения;
- от подачи входного переноса до установления всех выходов суммы при постоянном уровне на всех входах слагаемых;
- от одновременной подачи всех слагаемых до установления всех выходов суммы при постоянном уровне на входе переноса;
- от подачи входного переноса до установления выходного переноса при постоянном уровне на входах слагаемых;
- от подачи всех слагаемых до установления выходного переноса при постоянном уровне на входе слагаемых.
1.5 Характерные неисправности и пути их исправления
Характерные неисправности:
- не проходят сигналы, т.е. сбоит один или несколько логических элементов ИЛИ, либо проводник между логическими элементами плохо соединен;
- выходной сигнал не соответствует поступающим значениям;
- не работает вся схема, на входящие сигналы не реагирует.
Пути исправления:
- в случае неисправности логических элементов необходимо их заменить, также, если неисправны проводники нужно исправить их соединение;
- проверить проводники на наличие контакта с входом, проверить правильность соединений;
- проверить питание микросхемы, проверить целостность проводников.
Все неисправности можно обнаружить при помощи мультиметра, поочерёдно проверяя входы и выходы логических элементов, и сравнивая показания прибора с теоретическими расчетами.
Технологическая часть
2.1 Расчёт полного одноразрядного сумматора
Отметим два момента:
Первый: в таблице 3 и таблице 4 выходные сигналы P и S не случайно расположены именно в такой последовательности. Это подчеркивает, что PS рассматривается как двухразрядное двоичное число, например, 1 + 1 = 210 = 102 , то есть P = 1, а S = 0 или 1 + 1 + 1 = 310 = 112, то есть P = 1, а S = 1.
Второй: выходные сигналы P и S полного двоичного сумматора относятся к классу самодвойственных функций алгебры логики. Самодвойственными называют функции, инвертирующие своё значение при инвертировании всех переменных, от которых они зависят. Обратите внимание, что P и S для четвертьсумматора и полусумматора не являются самодвойственными функциями! Преимущества, вытекающие из этого свойства полного двоичного сумматора, будут рассмотрены при анализе возможностей ИС типа 155ИМ1.
Уравнение для переноса может быть минимизировано:
= ab + ap + bp.
При практическом проектировании сумматора уравнения (6) и (7) могут быть преобразованы к виду, удобному для реализации на заданных логических элементах с некоторыми ограничениями (по числу логических входов и др.) и удовлетворяющему предъявляемым к сумматору требованиям по быстродействию.
Например, преобразуем уравнения (6) следующим образом:
Из выражений (8) следует, что полный двоичный сумматор может быть реализован на двух полусумматорах и одном двухвходовом элементе ИЛИ. Соответствующая схема приведена на рисунке 8.

Рисунок 8 – Схема полного двоичного сумматора
Из выражения (8) для S также следует:
S = a Å b Å p.
Примечание. Так как операция в выражении (9) коммутативна (переменные можно менять местами), то следует, что три входа полного двоичного сумматора абсолютно равноправны и на любой из них можно подавать любую входную переменную. Это полезно помнить, разводя печатные платы, на которых установлены ИС сумматоров.
К настоящему времени разработано большое число схем сумматоров. Доказано (нашим отечественным ученым Вайнштейном), что при использовании только одного инвертора нельзя реализовать полный двоичный сумматор со сложностью Pкв < 16, а при двух инверторах — Pкв < 14, где Pкв — вес по Квайну, используемый как оценка сложности любых комбинационных схем. Pкв — это общее число всех входов всех логических элементов схемы без учёта инверторов.
Рисунок 9 — Карта Карно
Покажем, используя два метода, как была получена рациональная (с использованием только одного инвертора) схема полного двоичного сумматора, явившаяся основой схем ИС сумматоров типа 7480, 155ИМ1 и др.
Первый метод основан на использовании значения выходного переноса P как вспомогательной переменной при определении выходной суммы S таблица 5. В таблице 5 при наборах переменных, являющихся нереальными (например, единичное значение переноса при нулевых значениях всех входных переменных), поставлены безразличные значения (крестик) для функции S, которые можно доопределять произвольным образом.
Из карты Карно для функции S изображённой на рисунке 9 следует:
S = abp + Pa + Pb + Pp = = abp + P(a + b + p).
Второй метод основан на применении диаграмм Венна. На рисунке 10а показана диаграмма Венна для трех переменных а, b, p; области, ограниченные окружностями, соответствуют переменным а, b, p, а области, обозначенные цифрами от 0 до 7 — соответствующим конъюнкциям (например, 5 = abp). Область, заштрихованная на рисунке 10б, очевидно, соответствует функции P = ab + ap + bp.
Функция S представлена заштрихованной областью на рисунке 7в. Её можно представить суммой произведения функции a + b + p рисунке 10г на функцию ab + ap + bp рисунок 10д и функции abp рисунок 10е. Очевидно, что в этом случае получается выражение для S, аналогичное уравнению (10).
Рисунок 10 – Диаграммы Венна
Схема сумматора, реализованного по уравнениям (7) и (10), приведена на рисунке 10а. В данной схеме используются многовходовые логические элементы И и ИЛИ. Если использовать только двухвходовые элементы, то получаются схемы, приведённые на рисунке 10 б, в.
Рисунок 11 – Логическая схема сумматора
2.2 Выбор элементной базы
Прежде чем рассказывать о подборе элементов и дальнейших их свойствах познакомимся с терминологией и элементами конструкции микросхем.
Интегральная микросхема — микроэлектронное изделие, выполняющее определенную функцию преобразования, обработки сигнала или накапливание информации и имеющее высокую плотность упаковки электрически соединенных элементов и кристаллов, которое с точки зрения требований к испытаниям, приемке, поставке и эксплуатации рассматривается как единое целое.
Элемент интегральной микросхемы — это часть интегральной микросхемы, реализующая функцию какого-либо электрорадиоэлемента (например, транзистора, диода, резистора, конденсатора), которая выполнена нераздельно от кристалла или подложки и не может быть выделена как самостоятельное изделие с точки зрения требований к испытаниям, приемке, поставке и эксплуатации.
Компонент интегральной микросхемы — часть интегральной микросхемы, реализующая функции какого-либо электрорадиоэлемента, которая может быть выделена как самостоятельное изделие с точки зрения требований к испытаниям, приемке, поставке и эксплуатации. Компонент является частью гибридной микросхемы.
Цифровая интегральная микросхема — микросхема, предназначенная для преобразования и обработки сигналов, изменяющихся по закону дискретной функции
Аналоговая интегральная микросхема — микросхема, предназначенная для преобразования и обработки сигналов, изменяющихся по закону непрерывной функции.
При разработке технической документации или при составлении описаний конструкций микросхем ГОСТ обязывает пользоваться общими терминами (корпус, подложка, плата, пластина, кристалл), а также некоторыми специальными, которыми определяются особенности внутреннего строения микросхем.
Корпус — часть конструкции интегральной микросхемы, предназначенная для защиты микросхемы от внешних воздействий и для соединения с внешними электрическими цепями посредством выводов. Типы и размеры корпусов микросхем, а также расположение и число их выводов стандартизованы (см. ГОСТ 17467—79).
Подложка — заготовка из диэлектрического материала, предназначенная для нанесения на нее элементов гибридных и пленочных интегральных микросхем межэлементных и (или) межкомпонентных соединений, а также контактных площадок.
Плата — часть подложки (или вся подложка) гибридной интегральной микросхемы, на поверхности которой нанесены пленочные элементы микросхемы, межэлементные и межкомпонентные соединения и контактные площадки.
Кристалл — часть пластины, в объеме и на поверхности которой сформированы элементы полупроводниковой микросхемы, межэлементные соединения и контактные площадки.
Базовый кристалл — часть полупроводниковой пластины с определенным набором сформированных элементов, в том числе электрически соединенных и не соединенных между собой, предназначенный для дальнейшего проектирования.
Подбор элементов осуществлен таким образом, чтобы при максимуме экономической выгоды получить систему, удовлетворяющую всем поставленным требованиям, с высокой степенью надежности и с высокими эксплуатационными показателями.
При выборе элементов подбор производился из числа наиболее распространенных и доступных, с хорошими массогабаритными показателями и широким диапазоном рабочих температур. При подборе учитывался такой фактор, как надежность элементов. Выбор компонентов производился с учетом возможной дальнейшей модификации разработанного устройства и возможности аппаратной части устройства намного превосходят возможности, изложенные в техническом задании.
В качестве элементной базы для построения арифметического устройства могут быть использованы ИМС серии К155ЛА3, К155ЛП5.
В своих разработках радиолюбители наряду с микросхемами ТТЛ широко используют микросхемы на полевых транзисторах, из которых наибольшее распространение получили серии микросхем КМОП (комплементарные полевые транзисторы со структурой металл-окисел-полупроводник). К ним относятся, например, микросхемы серий К164, К176, К561, К564. Для: таких микросхем напряжения, соответствующие высокому и низкому логическим уровням, составляют соответственно 8,6…8,8 и 0,02…0,05 В (при напряжении питания 9 В).
Особенностью микросхем ТТЛ, а именно наличие в выходном каскаде ЛЭ двухтактной схемы, увеличивает импульсный ток потребления при переключении. Тем самым с ростом частоты переключения увеличивается динамическая мощность потребления и ограничивается время нарастания и спада входных импульсов до 150 нс.
Микросхемы серии К155 имеют одну важную особенность: если на входы не подается сигнал, то это равносильно подаче на них единичного сигнала. Нуль на входе воспринимается микросхемой только в том случае, когда он соединен с источником низкого напряжения. Соответственно, на выходах микросхем К155ЛА3 и К155ЛА8 должны быть сигналы логического 0, если на входы не подаются сигналы.
Микросхемы серии К155 питаются от источника постоянного напряжения 5В±5%, потребляя ток (на один корпус) в зависимости от назначения от 10 до 100 мА. Как было отмечено, напряжение высокого уровня фактически составляет около 3,5 В, а низкого -около 0,1 В.
Корпус интегральной микросхемы предназначен для защиты ее от внешних воздействий и обеспечения нормальной работы в течение всего срока службы микросхемы. Для выполнения своего функционального назначения корпус и его конструкция должны отвечать определенным требованиям: обеспечивать необходимую электрическую связь между элементами схемы и выводами, гарантировать электрическую изоляцию между выводами.
Немаловажно, что назначение корпуса — защищать кристалл микросхемы от влияния света, а так же поглощать собственное излучение элементов схемы и служить и служить экраном от внешних магнитных полей.
Конструкция корпуса должна обеспечивать теплоизоляцию кристалла микросхемы, имея достаточную прочность, предохраняющую элементы микросхемы от различных повреждений во время эксплуатации.
Для защиты схемы от электрических помех на выходы питания ставится электролитический конденсатор К-53-14-1,6В-6,8 мкФ. Для защиты от низкочастотных помех, между контактами питания и заземления, ставятся керамические конденсаторы типа КМ-5б-Н90-0,047 мкФ.
Приведём корпус микросхем широкого применения К155 и основные технические характеристики:
Рисунок 12 – Корпус микросхемы К155
