ОГЛАВЛЕНИЕ
ВВЕДЕНИЕ
1 Понятие и этапы имитационного моделирования
2 Виды имитационного моделирования
3 Характеристика методов имитационного моделирования
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
ВВЕДЕНИЕ
Имитационное моделирование применяется к процессам, в ход которых может время от времени вмешиваться человеческая воля. Человек, руководящий операцией, может в зависимости от сложившейся обстановки, принимать те или другие решения, подобно тому, как шахматист, глядя на доску, выбирает свой очередной ход. Затем приводится в действие математическая модель, которая показывает, какое ожидается изменение обстановки в ответ на это решение и к каким последствиям оно приведет спустя некоторое время. Следующее «текущее решение» принимается уже с учетом реальной новой обстановки и т.д. В результате многократного повторения такой процедуры руководитель как бы «набирает опыт», учится на своих и чужих ошибках и постепенно выучивается принимать правильные решения – если не оптимальные, то почти оптимальные.
Имитационное моделирование позволяет осуществлять многократные испытания модели с нужными входными данными, чтобы определить их влияние на выходные критерии оценки работы системы. При таком моделировании компьютер используется для численной оценки модели, а с помощью полученных данных рассчитываются ее реальные характеристики.
Имитационная модель отображает стохастический процесс смены дискретных состояний системы. При реализации модели на компьютере производится накопление статистических данных по показателям модели, которые являются предметом исследований.
По окончании моделирования накопленная статистика обрабатывается, и результаты моделирования получаются в виде выборочных распределений исследуемых величин. Таким образом, математическая статистика и теория вероятностей являются математическими основами имитационного моделирования.
Цель работы — охарактеризовать методы имитационного моделирования.
1 Понятие и этапы имитационного моделирования
Имитационное моделирование — метод исследования, который основан на замене изучаемой системы — имитирующей. Именно с имитирующей системой проводят эксперименты (на реальном объекте эксперименты не проводятся, чтобы не испортить его в случае нерентабельности решения, и дабы сократить временные затраты) и в результате получают информацию об изучаемой системе, желаемом объекте [1]. Метод позволяет имитировать, например, работу моделей бизнес-процессов так, как они происходили бы в действительности, с учетом графиков рабочего времени и занятости временных ресурсов и наличия необходимого количества материальных ресурсов. В результате, можно оценить реальное время выполнения как одного процесса, так и заданного их множества, а также просчитать ошибки и увидеть возможные риски при решении данным способом той или иной организационно-технической задачи.
Имитационная модель — математическое описание объекта с применением логики, которое может быть использовано для проведения экспериментов на компьютере в целях проектирования, анализа и оценки функционирования объекта, неподдающегося наблюдению в настоящее время или требующего больших затрат такого ресурса, как время.
Структура имитационного моделирования является последовательно-циклической. Последовательность определяется процессом имитационного моделирования, который можно разбить на ряд последовательных этапов, выполнение которых осуществляется от предыдущего к последующему. Цикличность проявляется в необходимости возвращения к предыдущим этапам и повторении уже однажды пройденного пути с некоторыми измененными в силу необходимости данными и параметрами модели, поставленной задачи [2].
Этапы имитационного моделирования
Первый этап такой же, как и в любом исследовании. Он необходим для того, чтобы была оценена потребность изучения объекта или проблемы, возможность и способы решения поставленных задач, ожидаемые результаты, прогнозированные затраты и прибыль. Этот этап важен для практического применения метода моделирования. Часто к этому этапу возвращаются после окончания исследования модели и обработки результатов для изменения постановки задачи, а иногда и модернизации цели моделирования.
Второй этап включает в себя формализацию описания моделируемого объекта на основе выбранной теоретической базы, то есть на основе каких-либо выбранных показателей, характеризующих объект и его окружение. На этом этапе, на естественном языке дается описание исследуемого объекта, взаимодействия между элементами объекта и объекта с внешней средой. На основе описания объекта выбирается концепция его формального определения, и то, как он будет отображаться в имитационном моделировании. Таким образом, в конце данного этапа словесное описание исследуемой системы превращается в абстрактную математическую структуру. Заканчивается второй этап проверкой соответствия имитационной модели с реальной системы. Если этого нет, то следует провести коррекцию в определении теоретической базы модели.
Третий этап — проведение исследования на разработанной модели путем «прогона» ее на ЭВМ. Перед началом исследования полезно составить такую последовательность модели, которая позволила бы получить необходимый объем информации при данном составе и достоверности первоначальных данных. Далее на основе разработанного плана эксперимента осуществляют пробы имитационной модели на ЭВМ, т.е. первые «прогоны» этой модели. В конце этого этапа осуществляется обработка результатов с целью представления их в виде, наиболее удобном для анализа.
Четвертый этап приводит к анализу результатов исследования. На этом этапе определяются свойства реальной системы, которые наиболее важны для исследователя. На основе результатов подготавливаются окончательные выводы по проведенному моделированию, по работе программы, по заданному объекту, а также по оптимальности решения, заложенных в программе.
Пятый этап — это заключительный этап. Здесь формулируются окончательные выводы по заданному объекту, заложенного в имитационной модели, и разрабатываются рекомендации по использованию результатов моделирования для достижения поставленных предприятием целей. Часто на основе этих выводов возвращаются к началу процесса моделирования для необходимых изменений в теоретической и практической части модели и повторным исследованиям с измененной моделью для проверки наиболее оптимального решения. В результате нескольких подобных циклов получают имитационную модель, наилучшим образом удовлетворяющую поставленным целям и приводящая к полноценному описанию решаемой задачи и к ответу на нее [3].
2 Виды имитационного моделирования
Агентное моделирование — относительно новое (1990е-2000е гг.) направление в имитационном моделировании, которое используется для исследования децентрализованных систем, динамика функционирования которых определяется не глобальными правилами и законами (как в других парадигмах моделирования), а наоборот. Когда эти глобальные правила и законы являются результатом индивидуальной активности членов группы. Цель агентных моделей — получить представление об этих глобальных правилах, общем поведении системы, исходя из предположений об индивидуальном, частном поведении ее отдельных активных объектов и взаимодействии этих объектов в системе. Агент — некая сущность, обладающая активностью, автономным поведением, может принимать решения в соответствии с некоторым набором правил, взаимодействовать с окружением, а также самостоятельно изменяться.
Дискретно-событийное моделирование — подход к моделированию, предлагающий абстрагироваться от непрерывной природы событий и рассматривать только основные события моделируемой системы, такие как: «ожидание», «обработка заказа», «движение с грузом», «разгрузка» и другие. Дискретно-событийное моделирование наиболее развито и имеет огромную сферу приложений — от логистики и систем массового обслуживания до транспортных и производственных систем. Этот вид моделирования наиболее подходит для моделирования производственных процессов. Основан Джеффри Гордоном в 1960х годах.
Системная динамика — парадигма моделирования, где для исследуемой системы строятся графические диаграммы причинных связей и глобальных влияний одних параметров на другие во времени, а затем созданная на основе этих диаграмм модель имитируется на компьютере. По сути, такой вид моделирования более всех других парадигм помогает понять суть происходящего выявления причинно-следственных связей между объектами и явлениями. С помощью системной динамики строят модели бизнес-процессов, развития города, модели производства, динамики популяции, экологии и развития эпидемии. Метод основан Джеем Форрестером в 1950 годах. имитационное моделирование обучение [4].
Аналитическое моделирование сложных систем, очевидно, имеет ограниченные возможности, что и вызвало к жизни имитационные модели. Могут быть выделены следующие основные классы имитационных моделей:
-непрерывные;
-дискретные;
-пространственные.
3 Характеристика методов имитационного моделирования
Основными методами имитационного моделирования являются: аналитический метод, метод статического моделирования и комбинированный метод (аналитико-статистический) метод.
Аналитический метод применяется для имитации процессов в основном для малых и простых систем, где отсутствует фактор случайности. Например, когда процесс их функционирования описан дифференциальными или интегро-дифференциальными уравнениями. Метод назван условно, так как он объединяет возможности имитации процесса, модель которого получена в виде аналитически замкнутого решения, или решения полученного методами вычислительной математики.
Метод статистического моделирования первоначально развивался как метод статистических испытаний (Монте-Карло). Это – численный метод, состоящий в получении оценок вероятностных характеристик, совпадающих с решением аналитических задач (например, с решением уравнений и вычислением определенного интеграла). В последствии этот метод стал применяться для имитации процессов, происходящих в системах, внутри которых есть источник случайности или которые подвержены случайным воздействиям. Он получил название метода статистического моделирования.
При исследовании сложных систем, подверженных случайным возмущениям используются вероятностные аналитические модели и вероятностные имитационные модели.
В вероятностных аналитических моделях влияние случайных факторов учитывается с помощью задания вероятностных характеристик случайных процессов (законы распределения вероятностей, спектральные плотности или корреляционные функции). При этом построение вероятностных аналитических моделей представляет собой сложную вычислительную задачу. Поэтому вероятностное аналитическое моделирование используют для изучения сравнительно простых систем.
Подмечено, что введение случайных возмущений в имитационные модели не вносит принципиальных усложнений, поэтому исследование сложных случайных процессов проводится в настоящее время, как правило, на имитационных моделях [5].
В вероятностном имитационном моделировании оперируют не с характеристиками случайных процессов, а с конкретными случайными числовыми значениями параметров процессов и систем. При этом результаты, полученные при воспроизведении на имитационной модели рассматриваемого процесса, являются случайными реализациями. Поэтому для нахождения объективных и устойчивых характеристик процесса требуется его многократное воспроизведение, с последующей статистической обработкой полученных данных. Именно поэтому исследование сложных процессов и систем, подверженных случайным возмущениям, с помощью имитационного моделирования принято называть статистическим моделированием.
Статистическая модель случайного процесса — это алгоритм, с помощью которого имитируют работу сложной системы, подверженной случайным возмущениям; имитируют взаимодействие элементов системы, носящих вероятностный характер.
При реализации на ЭВМ статистического имитационного моделирования возникает задача получения на ЭВМ случайных числовых последовательностей с заданными вероятностными характеристиками. Численный метод, решающий задачу генерирования последовательности случайных чисел с заданными законами распределения, получил название «метод статистических испытаний» или «метод Монте-Карло».
Так как метод Монте-Карло кроме статистического моделирования имеет приложение к ряду численных методов (взятие интегралов, решение уравнений), то целесообразно иметь различные термины.
Итак, статистическое моделирование — это способ изучения сложных процессов и систем, подверженных случайным возмущениям, с помощью имитационных моделей.
Метод Монте-Карло — это численный метод, моделирующий на ЭВМ псевдослучайные числовые последовательности с заданными вероятностными характеристиками
Методика статистического моделирования состоит из следующих этапов:
- Моделирование на ЭВМ псевдослучайных последовательностей с заданной корреляцией и законом распределения вероятностей (метод Монте-Карло), имитирующих на ЭВМ случайные значения параметров при каждом испытании;
- Преобразование полученных числовых последовательностей на имитационных математических моделях.
- Статистическая обработка результатов моделирования.
Комбинированный метод (аналитико-статистический) позволяет объединить достоинства аналитического и статистического методов моделирования. Он применяется в случае разработки модели, состоящей из различных модулей, представляющих набор как статистических, так и аналитических моделей, которые взаимодействуют как единое целое. Причем, в набор модулей могут входить не только модули, соответствующие динамическим моделям, но и модули, соответствующие статическим математическим моделям [5].
ЗАКЛЮЧЕНИЕ
В настоящее время успешная деятельность практически во всех сферах экономики не возможна без моделирования поведения и динамики развития процессов, изучения особенностей развития экономических объектов, рассмотрения их функционирования в различных условиях, а программные и технические средства должны стать здесь первыми помощниками.
На основе проведенного в данной работе исследования сущности и содержания метода имитационного моделирования можем сделать ряд выводов:
Имитационная модель отражает временной, пространственный и логический аспекты исследуемого процесса, тогда как в других моделях, как правило, присутствует один из них.
Это сравнительно новый класс моделей, которые основаны на программировании.
Обладая замечательным инструментом – имитационным моделированием, можно решить задачи высокого уровня сложности.
Особенно сейчас, в условиях спада экономической активности и производственной деятельности, когда государству и предприятиям жизненно необходимо считать каждую копейку и минуту, имитационное моделирование становится особенно актуально. Оно представляет собой универсальный подход для принятия решений в условиях неопределённости.
Основными методами имитационного моделирования являются: аналитический метод, метод статического моделирования и комбинированный метод (аналитико-статистический) метод.
Аналитический метод применяется для имитации процессов в основном для малых и простых систем, где отсутствует фактор случайности.
Метод статистического моделирования первоначально развивался как метод статистических испытаний (Монте-Карло). Это – численный метод, состоящий в получении оценок вероятностных характеристик, совпадающих с решением аналитических задач
Комбинированный метод (аналитико-статистический) позволяет объединить достоинства аналитического и статистического методов моделирования. Он применяется в случае разработки модели, состоящей из различных модулей, представляющих набор как статистических, так и аналитических моделей, которые взаимодействуют как единое целое.
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
- Понятие имитационной модели. Понятие имитационного моделирования. Структура и виды имитационного моделирования[Электронный ресурс]\\URL:https://studwood.ru/1608493/informatika/ponyatie_imitatsionnoy_modeli_ponyatie_imitatsionnogo_modelirovaniya_struktura_vidy_imitatsionnogo_modelirovaniya
- Теоретические основы имитационного моделирования[Электронный ресурс]\\URL:http://eos.ibi.spb.ru/umk/11_4/5/5_R0_T1.html
- Виды имитационного моделирования [Электронный ресурс]\\URL:https://studwood.ru/1938297/informatika/vidy_imitatsionnogo_modelirovaniya
- ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ: ТЕОРИЯ И ПРАКТИКА[Электронный ресурс]\\URL: https://scienceforum.ru/2013/article/2013004438
- Основные методы имитационного моделирования [Электронный ресурс]\\URL: https://sdamzavas.net/3-54531.html
Прикрепленные файлы: |
|
|---|---|
|
Администрация сайта не рекомендует использовать бесплатные работы для сдачи преподавателю. Эти работы могут не пройти проверку на уникальность. Узнайте стоимость уникальной работы, заполните форму ниже: Узнать стоимость |
|
Скачать файлы: |
|
|
|
